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Abstract

We revisit a fundamental question in the axiomatic approach to non-cooperative games—viz., the

consistency of admissibility (A) and backward induction (BI). The literature has concluded that A

and BI are consistent. However, we argue that, to reach this conclusion, the literature has implicitly

assumed that BI satisfies a monotonicity property: If a solution concept satisfies BI, then a refinement

of the solution concept also satisfies BI. We provide a formalization of BI in terms of fundamentals of

the game and, from this, conclude that BI is a non-monotonic property. In fact, we show that A and

BI are inconsistent on the domain of all games. It appears to be an open question whether they are

consistent on a subdomain of games on which there is a well-defined BI outcome.

1 Introduction

Admissibility (i.e., the avoidance of weakly dominated strategies) and backward induction are basic prop-

erties to demand of a solution concept. They are viewed as fundamental requirements in the axiomatic

approach to non-cooperative game theory. (See Kohlberg and Mertens (1986) and, for a recent survey,

Govindan and Wilson (2008).) As such, a basic question arises: Are admissibility (A) and backward

induction (BI) consistent?

The question of the consistency of A and BI is old. Indeed, the common view is that the question is

closed—that A and BI are, in fact, consistent. Two results point to this conclusion:

• Van Damme (1984, Proposition 1, p.9) observed that any quasi-perfect equilibrium is a sequential

equilibrium.

• Kohlberg and Mertens (1986, Proposition 0, p.1009) showed that any proper equilibrium induces a

sequential equilibrium.

Recall, both quasi-perfect and proper equilibrium satisfy A. Moreover, the argument goes, both satisfy BI

since both induce a sequential equilibrium. The consistency of A and BI follows.

∗We have benefited greatly from conversations with Hari Govindan and Bill Zame. We thank the editor, two referees,
Selvin Akkus, Heski Bar-Isaac, Pierpaolo Battigalli, Willemien Kets, Priscilla Man, Andy McLennan, John Nachbar, Alex
Peysakhovich, Carlos Pimienta, Ariel Ropek, Marciano Siniscalchi, Harborne Stuart, and seminar participants at UCLA and
the World Congress of the Econometric Society for valuable input. Support from the NYU Stern School of Business, the W.P.
Carey School of Business at Arizona State University, and the Department of Economics at UCLA is gratefully acknowledged.
†Address: Stern School of Business and Center for Data Science, New York University, New York, NY 10012,

adam.brandenburger@stern.nyu.edu, www.stern.nyu.edu/∼abranden
‡Address: W.P. Carey School of Business, Arizona State University, Tempe, AZ 85287, amanda.friedenberg@asu.edu,

www.public.asu.edu/∼afrieden



But, do quasi-perfect equilibrium and proper equilibrium satisfy BI? Let us review the argument for

“yes.” Recall, in perfect-information games (satisfying a no-ties condition), any quasi-perfect equilibrium—

and, therefore, any proper equilibrium—yields the BI outcome. In general games (i.e., both perfect- and

imperfect-information games), sequential equilibrium is commonly thought to embody BI. As refinements

of sequential equilibrium, quasi-perfection, and properness are presumed to inherit this property and,

therefore, to satisfy BI in general.

Notice two key steps in this argument. The first is that there is a ‘direct’ definition of BI, and sequential

equilibrium satisfies the definition. The second is that, if a solution concept satisfies BI, then a refinement

of the concept also satisfies BI. Does each of these steps hold up to scrutiny?

Take the first step. What do we mean by a direct definition of BI? We mean a test on a solution concept

so that a solution concept satisfies BI if and only if it passes the test. Our position—which is admittedly

controversial—is that it is precisely such a test that has been missing from the literature.

The early literature attempted to provide such a test, but fell short of providing a conclusive definition.

(Section 3 reviews earlier proposals. The conclusion discusses one expert’s view on the provision of such

a test.) Instead, the modern literature turned to, what we would call, an ‘indirect’ definition. By this

we mean a test for whether a given solution concept satisfies BI in terms of other solution concepts (often

sequential equilibrium, but also other solution concepts), as opposed to a test based on the solution concept

itself. For example, a solution concept is often said to satisfy BI if each component of the solution contains a

sequential-equilibrium outcome. (See, e.g., the survey by Govindan and Wilson (2008).) From the point of

view of axiomatics, such an indirect definition seems to us to be rather unconventional, precisely because it

refers to other solution concepts. More commonly, in axiomatics, when we ask whether a particular member

of some family of objects satisfies a certain property, we do not look at other objects in the family.1

What, then, is our BI test? It is a requirement that the solution of the whole game be induced by the

solution on each of the subgames—a property we will call difference (D). We will argue that D captures

the essential idea underlying BI. We show that sequential equilibrium does satisfy D and so, in this sense,

it satisfies BI.

Now, the second step: if a solution concept satisfies BI, then a refinement of the concept also satisfies

BI. Given our definition of BI, this is false. We show that, while sequential equilibrium satisfies BI, quasi-

perfection and properness do not. There is a basic non-monotonicity in whether or not a solution concept

satisfies BI. (This is the case even if we restrict attention to a class of games satisfying a ‘no-ties’ condition.)

In light of this non-monotonicity, the question of the consistency of A and BI appears to be open. We

investigate the extent to which the question does or does not, in fact, remain open.

The paper proceeds as follows. Section 2 gives the formalism. Section 3 defines the property of BI.

It explores the behavior of this property on both perfect and imperfect-information games. It goes on to

point to solution concepts that satisfy the property of BI. Section 4 shows the basic non-monotonicity in

whether or not a solution concept satisfies BI. Section 5 investigates the extent to which A and BI are or

are not consistent. Section 6 concludes by discussing the approach at a broader level.

1An analogy may help: To test whether a map f is continuous, we need look no further than f itself (and the relevant
topologies). In particular, we do not need to look at other functions g in whatever family of functions we have in mind.
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2 Formulation

We fix the following notation throughout. Given sets X1, . . . , XI , write X = ×Ii=1Xi and X−i = ×j 6=iXj .

Likewise, given maps fi : Xi → Yi, i = 1, . . . , I, write f : X → Y for the product map, i.e., f(x1, . . . , xI) =

(f1(x1), . . . , fI(xI)). Define product maps f−i : X−i → Y−i analogously. If X is either a finite or a closed

subset of Rn, letM(X) be the set of Borel probability measures on X. Write Suppµ for the support of µ.

Extensive-Form Game We consider finite extensive forms of perfect recall, without chance moves.

Write Γ for such a game. We take the definition of Γ, as in Kuhn (1950)-Kuhn (1953), with the exception

that we allow a non-terminal node to have only one outgoing branch (rather than two).

Let N (resp. Z) be the set of non-terminal (resp. terminal) nodes of such an extensive-form. The

players are labelled i = 1, . . . , I. Write Hi for the family of information sets for player i and H =
⋃I
i=1Hi

for the family of all information sets. (Recall, under the Kuhn definition of a game, an information set

is a subset of N .) Write Mi[h] for the set of moves m available to i at h ∈ Hi. (Recall, under the Kuhn

definition of a game, a move is a subset of N .) A pure strategy si for player i maps each h ∈ Hi to some

mi ∈Mi[h]. Let Πi : Z → R be the payoff function for player i. The outcome map Π : Z → RI is given

by Π(z) = (Π1(z), . . . ,ΠI(z)).

The extensive-form game induces a strategic form: Write Si (resp. Σi) for the set of pure strategies

(resp. mixed strategies) for player i. The map ζ : S → Z takes each pure-strategy profile into the terminal

node it reaches. Write πi : S → R for player i’s strategic-form payoff function, i.e., πi = Πi ◦ ζ. Extend πi

to Σi × Σ−i in the usual way.

Say a pure strategy si ∈ Si allows an information set h if there exists some s−i ∈ S−i so that the

path induced by (si, s−i) passes through h. Say σi ∈ Σi (resp. σ−i ∈ Σ−i) allows an information set h

if there is some si with σi (si) > 0 (resp. s−i with σ−i(s−i) > 0) such that si (resp. s−i) allows h. Say

σi ∈ Σi (resp. σ−i ∈ Σ−i) fully allows an information set h if, for each si with σi(si) > 0 (resp. s−i with

σ−i(s−i) > 0), si (resp. s−i) allows h. Write Σi(h) (resp. Σ−i(h)) for the set of strategies σi (resp. σ−i)

that fully allow h. (Note carefully that we abuse notation here, since Σ−i(h) need not be a product set.)

Say a strategy profile (σi, σ−i) allows a move m ∈ Mi[h] if there exists some strategy profile s with

σ(s) > 0, so that the path induced by s passes through h and m is played with strictly positive probability

under σi. Given a subset of strategy profiles Q ⊆ Σ, say Q allows a move m if there is some σ ∈ Σ that

allows m.

Outcome Equivalence Terminal nodes z, z̃ ∈ Z are outcome equivalent if Π(z) = Π(z̃). At times,

we will consider payoff functions that satisfy a no-ties condition:

Definition 2.1 A game Γ satisfies the Single-Payoff Condition (SPC) if, for all z, z̃ ∈ Z, the following

holds: If i moves at the last common predecessor of z and z̃, then Πi(z) = Πi(z̃) implies Π(z) = Π(z̃).

In words, a game satisfies SPC if, whenever player i is indifferent between two terminal nodes over which he

is decisive, those two terminal nodes are outcome equivalent. It is clear that in a perfect-information (PI)

game satisfying SPC, there is a unique BI outcome. Moreover, SPC appears to be a minimal requirement

for this purpose.

We will also be interested in outcome equivalence for strategy profiles: A strategy profile σ ∈ Σ induces

a distribution over outcomes, viz., the measure inM(RI) given by the image measure of σ under Π ◦ ζ. In
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particular, the probability of outcome x ∈ RI is σ((Π ◦ ζ)−1(x)). Call strategy profiles σ and σ̃ outcome

equivalent if they induce the same distribution on outcomes. Note, we can (and do) define this notion of

outcome equivalence, even when σ and σ̃ are strategy profiles in two (possibly different) I-player games.

Given subsets of strategy profiles Q ⊆ Σ and Q̃ ⊆ Σ (of two, possibly different, I-player games), say

that Q induces the outcomes in Q̃ if, for each σ̃ ∈ Q̃, there is some σ ∈ Q such that σ and σ̃ are

outcome equivalent. Call Q and Q̃ outcome equivalent if Q induces the outcomes in Q̃, and Q̃ induces

the outcomes in Q.

Solution Concept A solution concept S associates with each game Γ a family of subsets of strategy

profiles for Γ. Formally, a solution concept S maps each game to a family of subsets of strategy profiles

for the game, i.e. S(Γ) ⊆
∏I
i=1 2Σi . The family S(Γ) is called the solution of Γ. Each element of S(Γ),

i.e., each subset of mixed-strategy profiles Q ∈ S(Γ), is called a component of the solution. A solution

concept R is a refinement of S if, for each game Γ and every R ∈ R(Γ), there is a Q ∈ S(Γ) so that Q

induces the outcomes in R.

Two examples of how a solution concept is modeled: First, we can take the solution concept of Nash

equilibrium to map each game to multiple components, where each component is a singleton and consists

of a particular Nash equilibrium. Second, we can take the solution to consist of a single component—e.g.,

all the iterated undominated profiles.

Remark 2.1 The tradition—following Kohlberg and Mertens (1986) and their successors—is to model

the Nash equilibrium as a solution concept that has finitely many components, each of which consists of a

connected set of Nash equilibria. Thus, they instead model an equilibrium-based solution concept, S, as

mapping each game to finitely many non-product subsets of strategy profiles.

We take an alternate route, modeling an equilibrium-based solution concept as consisting of singleton

(product) components. Let us preview why we take this alternate route: For the purpose of defining

backward induction, we will use the concept of a component to specify a player’s predictions about the

strategies her co-players’ choose. To fix ideas, consider a game with two distinct Nash equilibria, viz.

σ = (σ1, . . . , σI) and ρ = (ρ1, . . . , ρI). When we focus on σ, we implicitly assume that each player i thinks

others play according to σ−i. The strategies ρ−i are irrelevant for the purpose of specifying player i’s

predictions about the strategies of her co-players, given the focus on the equilibrium σ.

For the specific case of an equilibrium-based solution concept, there is a natural alternate choice of a

player’s prediction: We could collect all equilibrium strategy profiles into a single component (or finitely

many connected components) and define a local concept of a prediction, i.e., if (σi, σ−i) is an equilibrium,

then σ−i is player i’s prediction about the strategies her co-players’ choose. When using this concept of

prediction (in our definition of backward induction to come), all subsequent results follow through.2 While

this alternate approach works for equilibrium-based concepts, it would not work for non-equilibrium based

concepts. Our position is that the idea of backward induction is not fundamentally tied to equilibrium.3

Of course, our approach does not mitigate the fact that, for other purposes, it may be quite important

to focus on an object that, in the context of our paper, is a collection of unions over components. Our

2Of course, here we would amend the definition of a solution concept to map a game into a set of non=product subsets of
strategies.

3There is a large literature that investigates the relationship between backward induction and non-equilibrium solution
concepts. See, e.g., Nachbar (1992), Battigalli (1997), Cressman and Schlag (1998), Samuelson (1998), Hart (2002), Perea
(2010), Chen and Micali (2012), among many others.
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approach does not subtract from such an endeavor. Different modeling choices can be made for different

purposes. �

Remark 2.2 We have defined solution concepts in terms of mixed strategies. Of course, some solution

concepts are defined in terms of pure strategies (e.g., extensive-form rationalizability) and some solution

concepts are defined using behavioral strategies (e.g., sequential equilibrium). When needed, we will

understand all definitions in terms of pure or behavioral strategies. We will use the notation βi for a

behavioral strategy for player i. �

3 Backward Induction

The intuitive idea behind BI is clear: Fix a game Γ and a subgame ∆ of Γ. Now discard ∆, leaving behind

only the solution on this subgame—leaving behind the ‘ghost’ of the subgame, if you like. Then, we do

not change our original analysis.

While the idea is intuitively clear, it is less clear how to formalize it. There have been a number

of attempts at such a definition, especially in the earlier literature. (See Kohlberg and Mertens (1986,

pp.1012-1013) and Hillas and Kohlberg (2002).) Here, we argue that the correct definition is given by,

what we call, the Difference property. We also argue that alternative definitions proposed by the literature

do not succeed in capturing BI. Moreover, the Difference definition does not suffer from the same drawbacks

as these alternative definitions.

Defining Backward Induction

To formalize the idea of BI, we first need to specify what it means to delete a subgame, leaving behind

only the solution on the subgame. The relevant concept goes back to Kuhn (1953, p.208); we will call it

a difference game. A difference game is defined relative to a solution concept S. Begin with a game Γ

and a subgame ∆ of Γ. (Note, ∆ need not be a proper subgame, i.e., it may be Γ itself.) Fix a nonempty

component of S(∆), which we will denote Q∆. The (S, Q∆)-difference game is obtained by deleting from

the original game Γ any move not allowed by Q∆. It is readily verified that each (S, Q∆)-difference game

is a well-defined game. (This uses the fact that we required Q∆ to be nonempty.) Write ΓS,Q∆ for

the (S, Q∆)-difference game. Note, the difference game depends on the solution concept, subgame, and

particular component of the solution on the subgame.

We can now state our key property, which we refer to as the Difference Property (D):

(D) A solution concept S satisfies Difference (on G) if, for each game Γ (in G), and each subgame ∆ of

Γ the following holds: If Q ∈ S(Γ), there is a nonempty component Q∆ ∈ S(∆) and a component

Q̃ ∈ S(ΓS,Q∆), so that Q̃ induces outcomes in Q.

Difference bears a similarity to property (BI3) in Kohlberg and Mertens (1986, p.1012). (The Appendix

discusses the relationship further.) Loosely, it says that the solution on the whole game should be included

in the solution on what is left after replacing a subgame with what the solution allows on the subgame.

The Difference property works in much the same way as the backward induction algorithm. The

algorithm works by using what it prescribes on future subgames to pin down behavior on the current

subgame. The Difference property applies this same principle to general extensive-form games. Solutions

on subgames yield difference games, which are used to pin down the solution on the overall game. Formally,
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each (distribution on) outcome(s) allowed by the solution on the overall game must also be allowed by the

solution on some difference game.

Remark 3.1 A technical remark: Note that we say that a solution S may satisfy D on G, even if there is

some Γ ∈ G and some subgame ∆ of Γ, so that ∆ 6∈ G. No confusion should result. �

Note, by itself, D is missing two basic ingredients, which are built into the backward induction algorithm:

existence and optimization. Thus, we will impose D in the presence of two background axioms. First is

existence:

(E) A solution concept S satisfies Existence (on G) if, for each game Γ (in G), there is a nonempty

component of S(Γ).

Now turn to the idea of optimization. The basic idea will be that a strategy σi is rational if it

maximizes player i’s subjective expected payoffs at each information set that the strategy allows. That

is, at each information set h allowed by σi, there is some assessment ρi,h about the how others play the

game—concentrated on the event that information set h is reached—so that the conditional distribution

σi(·|Si(h)) maximizes player i’s subjective expected payoffs under ρi,h. Since it is assumed that all players

choose mixed strategies, each ρi,h is (by definition) a probability measure on Σ−i(h).4

Extend πi to Σi ×M(Σ−i) → R in the usual way. Say a strategy σ∗i is optimal under ρi ∈ M(Σ−i)

among strategies in Qi ⊆ Σi, if σ∗i ∈ Qi and πi(σ
∗
i , ρi) ≥ πi(σi, ρi) for each σi ∈ Qi. Fix some Q−i ⊆ Σ−i

Borel. Say a strategy σ∗i is Q−i-rational if, for each information set h ∈ Hi allowed by σ∗i , there is some

ρi,h ∈M(Σ−i(h)) satisfying the following:

σ∗i (·|Si(h)) is optimal under ρi,h among strategies in Σi(h), and

if Q−i ∩ Σ−i(h) 6= ∅, then ρi,h(Q−i) = 1. If σi is Σ−i-rational, we will simply say that σi is rational.

Note, if σi is Q−i-rational for some Q−i, then σi is rational.

(CR) A solution concept S satisfies Component-Wise Rationality (on G) if, for each game Γ, (in G)

and each component Q =
∏I
i=1Qi ∈ S(Γ), the following criterion is satisfied: If σi ∈ Qi, then σi is

Q−i-rational.

Component-Wise Rationality asks that strategies in a component Q of a solution are rational with respect

to the other players’ strategies in the component. Note that, imposing CR does not confine the solution

concept to be an equilibrium refinement. In particular, CR does not require that players have a ‘correct

assessment’ about the strategies played. Consider the solution concept of extensive-form rationalizability,

i.e., the solution concept SEFR that maps each game Γ to a single component corresponding to the set of

(pure strategy) extensive-form rationalizable strategies of Γ. Then, SEFR satisfies CR. But, there exists a

game Γ, so that the following holds: SEFR(Γ) = {
∏I
i=1Qi} ⊆

∏I
i=1 2Si has some sj ∈ Qj so that sj is not

optimal under any s−j ∈ Q−j .

Remark 3.2 In defining CR, we implicitly allow players to hold a correlated assessment about how others

play the game. Particular solution concepts satisfy a requirement of CR, relative to an independent assess-

ment requirement. (See, e.g., Battigalli (1996), Battigalli and Veronesi (1996), Kohlberg and Reny (1997),

and Swinkels (1994) on defining independence in extensive-form games.)

4Note, carefully, the subscript i refers to an object of player i. So, σi is a strategy of player i and ρi,h is an assessment of
player i (about players j 6= i).
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The question of correlation vs. independence has a long history in game theory. While the question is

important, our viewpoint is that it is orthogonal to the question of backward induction. Thus, we do not

preclude players from holding correlated assessments about how others play the game. �

Definition 3.1 Say that a solution concept satisfies BI if it satisfies D, E, and CR.

Background Check: Perfect-Information Games

We begin with a basic background requirement: A solution concept satisfies Difference, Existence, and

Component-Wise Rationality on the domain of PI games satisfying SPC if and only if it is outcome

equivalent to the unique backward induction outcome on this set of games. Write GPI-SPC for the class of

PI games satisfying SPC.

Proposition 3.2 Fix a solution concept S.

(i) If S satisfies D, E, and CR on GPI-SPC then, for each Γ ∈ GPI-SPC, each component of S(Γ) is outcome

equivalent to the backward induction algorithm on Γ.

(ii) If, for each Γ ∈ GPI-SPC, each component of S(Γ) is outcome equivalent to the backward induction

algorithm on Γ, then S satisfies D, E, and CR on GPI-SPC.

Proposition 3.2 says that D, E, and CR characterize BI on the domain of games satisfying SPC. Part (ii) is

standard. Part (i) is key: In part (ii), we could replace Difference with alternative axioms put forward in

the literature. But, we will soon point out that we cannot do the same for part (i).

Proof of Proposition 3.2. Begin with Part (i). The proof is by induction on the length of the game.

For a game of length 1, the result is immediate from E, CR, and the fact that the game satisfies SPC.

Assume the statement holds for any game of length l or less. Fix a game of length l + 1, where i

moves first and write ∆k, k = 1, . . . ,K, for the immediate subgames. For each such subgame ∆k, fix a

component Qk of S(∆k). Using the induction hypothesis, Qk 6= ∅ and any (σk1 , . . . , σ
k
I ) ∈ Qk gives the

unique backward induction outcome on that subgame.

Consider the game obtained by deleting from each immediate subgame ∆k any move not allowed by

Qk. Call this game ΓS . Then, in ΓS , each of i’s choices k = 1, . . . ,K leads to a unique outcome in the

associated subgame. Of course, these outcomes do not depend on the particular choices of Qk.

Using SPC, all rational strategies for i (in ΓS) are outcome equivalent. By E, there is a nonempty

component of S(ΓS). By CR, any nonempty component of S(ΓS) must be outcome equivalent to the

backward induction algorithm applied to ΓS . It follows that any nonempty component of S(ΓS) must be

outcome equivalent to to the backward induction algorithm applied to Γ.

Now, successively apply D to each subgame, so that any outcome allowed by any component of the

solution on the overall game must be allowed by the component on ΓS . (This uses the fact that there is a

unique outcome in this difference game and this outcome does not depend on the initial choice of solutions

Qk.) It follows that any outcome allowed by any component of the solution on the overall game must be

the backward induction outcome on that game. By E, the solution must have some nonempty component,

establishing part (i).

Turn to Part (ii). Fix a solution concept S, as in the premise. It is immediate that S satisfies E and

CR. We show D. Fix a PI game Γ satisfying SPC, so that there is a unique backward induction outcome.
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Let Q ∈ S(Γ) and note that, by assumption, each strategy profile in Q induces the backward induction

outcome in Γ. Fix a subgame ∆, a component Q∆ ∈ S(∆), and a component Q̃ ∈ ΓS,Q∆ . Since the

difference game, viz. ΓS,Q∆ , is also a PI game satisfying SPC, it has a unique backward induction outcome

and any profile in Q̃ must be outcome equivalent to this backward induction outcome. Now D follows

from the fact that the backward induction outcome on Γ coincides with the backward induction outcome

of ΓS,Q∆ .

To better appreciate Proposition 3.2, consider three alternate proposals:

• A solution concept S satisfies Projection (on G) if for each game Γ (in G) the following holds: For

each subgame ∆ and component Q ∈ S(Γ), there is a component Q∆ ∈ S(∆) such that for each

σ ∈ Q, the restriction of σ to the subgame ∆ is contained in Q∆.

• A solution concept S satisfies Reverse Projection (on G) if for each game Γ (in G) the following

holds: For each subgame ∆ and component Q ∈ S(Γ), there is a component Q∆ ∈ S(∆) such that,

for each σ∆ ∈ Q∆, there is some σ ∈ Q, so that σ∆ is the restriction of σ to ∆.

• A solution concept S satisfies Reverse Difference (on G) if for each game Γ (in G) and each subgame

∆ of Γ the following holds: If Q ∈ S(Γ), there is a nonempty component Q∆ ∈ S(∆) and a component

Q̃ ∈ S(ΓS,Q∆), such that Q induces the outcomes in Q̃.

Each of these properties are aimed at relating the solution on the whole game to the solution on parts

of the game: Projection asks that the solution on the whole game be pinned down by the solution on the

subgame, i.e., as opposed to the solution on the difference game. (Projection is property (BI1) in Kohlberg

and Mertens (1986, p.1012).) Reverse Projection asks that the solution on the subgame be pinned down

by the solution of the whole game. (Reverse Projection is property (BI2) in Kohlberg and Mertens (1986,

p.1012).) Reverse Difference asks that the solution on the difference game be pinned down by the solution

on the whole game.

Example 3.1 Let G = {Γ,∆, Γ̃}, as in Figures 3.1a-3.1c. These PI trees satisfy SPC. Let S be a solution

concept with S(Γ) = {{Out, In} × {L}}, S(∆) = {{L}}, and S(Γ̃) = {{(Out, L)}}. Notice that ∆ is a

subgame of Γ and Γ̃ is the (S, {L})-difference tree. So, S satisfies Projection, Reverse Projection, Reverse

Difference, Component-Wise Rationality, and Existence on G. Of course, S fails Difference on G.

The problem here is clear: The idea of BI is that solutions on parts of the game should be used to pin down

the solution on the whole game. If the notion of a “part” is a difference game (as in Reverse Difference),

but we instead require the reverse inclusion to D, then the solutions on difference games do not pin down

the solution on the whole game. Likewise, if the notion of a “part” is a subgame (as in Projection), then,

again, the solutions on the subgames do not pin down the solution on the whole game. To see this, return

to the example. While the solution S(∆) is used to pin down Bob’s behavior in Γ, it cannot be used to

pin down Ann’s behavior in Γ, because she has no move in ∆. Under D, even if Ann has no move in ∆,

we can use a component Q∆ of the solution on ∆ to pin down Ann’s behavior in Γ, since Ann does have a

move in the associated difference game.

Proposition 3.2 shows that Difference does not suffer from these same flaws. That said, D, E, and CR

only give the BI outcomes and not the BI strategies, as the next example illustrates.
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Figure 3.1

Example 3.2 Consider the game Γ in Figure 3.2, which is Figure 3 in Reny (1992, p.637). There, the

backward induction algorithm gives the strategies (Out-Down,Out-Down). Consider the solution concept

of extensive-form rationalizability, viz. SEFR. Proposition 3.4, to come, will show that this concept satisfies

D, E, and CR. But, SEFR(Γ) = {{Out-Down,Out-Across} × {In-Down}}. So, the set of extensive-form

strategies are disjoint from the backward induction strategies, even though they both imply the same path

of play.

A In

Out

2
0

B

3
4

Out

In A

1
2

Down

Across B

0
6

Down

Across 4
0

Figure 3.2: Backward Induction Outcomes vs. Strategies

Example 3.2 shows that, on PI games satisfying SPC, properties D, E, and CR are not sufficient to

give the backward induction strategies. One might conjecture that this is an artifact of defining D as a

requirement outcomes and not strategies—i.e., by requiring that outcomes of the solution on the whole

tree are pinned down by outcomes of the solution on the difference tree and not imposing an analogous

requirement on strategies. (Such a strategy-wise definition would be closer to Kohlberg and Mertens’s

(1986) (BI3).) But, the Appendix argues that this is not the case. In particular, replacing D with a

strategy-wise concept does not allow us to repeat the proof of Proposition 3.2 and come to a stronger

conclusion, i.e., that the backward induction strategies are played.

Finally, we note that, in a PI game that violates SPC, we may not get an outcome consistent with

the backward induction algorithm. The reason is that the algorithm implicitly imposes an equilibrium

requirement, which is is not imposed by our definition.

Example 3.3 Consider the game Γ in Figure 3.3, which violates SPC. The backward induction algorithm

gives either the strategy profile (Out, L) or the strategy profile (In,R). Consider the solution concept

of extensive-form rationalizability. We pointed out that SEFR satisfies D, E, and CR. But, SEFR(Γ) =

{{Out, In} × {L,R}}.
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AOut2
*
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B

0
0

L R

4
0

Figure 3.3: Violation of SPC

The key is that EFR does not require that players have a correct assessment about play. Thus, in

Γ, Ann may play In expecting that Bob play the rational strategy R. But, her assessment need not be

correct. This does not take away from the idea of backward induction: Ann does predict that Bob will

play ‘rationally’ (or ‘according to the solution’) in the future. This is the essence of the idea of backward

induction. The key is that the algorithm adds an additional equilibrium requirement above and beyond

the idea of backward induction. �

While D, E, and CR need not give an outcome consistent with the backward induction algorithm on PI

games that violate SPC, there is structure on the outcomes obtained. For instance, there are PI games

that violate SPC, for which a backward induction outcome would obtain.

Example 3.4 Consider the game Γ in Figure 3.4. If S satisfies D, E, and CR on G and Γ ∈ G, then for each

component Q of S(Γ), Q is a non-empty subset of {L,R} × {(l-r′)}. Of course, the backward induction

algorithm gives strategy profiles (L, l-r′) and (R, l-r′). �

A

L R

B B

l

2

2

r

0

0

l′

2

3

r′

1

1

Figure 3.4: Another Violation of SPC

Beyond Perfect-Information Games: Examples

We turn to two examples, which will illustrate how our definition of BI works in games of imperfect

information.

Example 3.5 Let Γ be Battle of the Sexes with an Outside Option, as in Figure 3.5. Here backward

induction is typically thought to lead to one of two outcomes—either A plays Out immediately or A

10



plays In-U and B plays L.5 Indeed, if a pure-strategy solution concept S satisfies D, E, and CR, then

S(Γ) ⊆ {{(Out,R)}, {(Out, L), (Out,R)}, {(In-U,L)}}.6

A

Out

3
*

In

A

B

U 4,2 0,0

D

L R

0,0 2,4

Figure 3.5: Battle of the Sexes with an Outside Option

Fix some Qa ×Qb ∈ S(Γ). By repeated application of CR and E,

Qa ×Qb ∈ {{(Out,R)}, {(Out, L), (Out,R)}, {(In-U,L)}} .

To see this claim, note that, by CR, Qa does not contain In-D. First suppose that In-U ∈ Qa. By CR and

E, Qb = {L}. Then, again using CR, Qa = In-U . Next, suppose that In-U 6∈ Qa, i.e., Qa = {Out}. By

CR, Qb 6= {L}.
Notice, the analysis did not make use of D. In fact, D need not impose further restrictions. To

understand why, write ∆ for the Battle of the Sexes subgame. Consider a pure-strategy solution concept

with S(Γ) = {{(Out,R)}, {(Out, L), (Out,R)}, {(In-U,L)}} and S(∆) = {{(U,L)}, {(D,R)}, {U,R} ×
{L,R}}. This solution concept satisfies D, E, and CR on the domain G = {Γ,∆}. �

Example 3.6 Consider the game Γ in Figure 3.6.7 This is a game with no proper subgames. But, still

we will see that, in the presence of E and CR, D has bite. In particular, if S satisfies D, E, and CR, then

S(Γ) = {{(L-x, l)}}.
To see the claim, fix some Q = Qa × Qb ∈ S(Γ). Now apply D: We must be able to find some

QΓ = QΓ
a × QΓ

b and some Q̃ = Q̃a × Q̃b ∈ S(ΓQΓ) so that Q̃ induces outcomes in Q. By CR and E

applied to the game Γ, QΓ
a is a non-empty subset of {L-x,R-x}. It follows from CR and E applied to the

(S, QΓ)-difference game that Q̃b = {l}. Thus, applying D and E to Γ, Qb = {l}. Now by CR applied to the

game Γ, Qa = {L-x}, as claimed. �

Example 3.6 illustrates that our definition of BI has bite, even if a game has no proper subgame. It also

illustrates the importance of taking CR as our definition of optimization. To see this last claim, compare

CR with the following weaker property:

5Note, it is forward induction that is typically thought to rule out the case that Ann plays Out.
6The focus on pure strategies is only for notational convenience. An analogous argument can be made for a solution

concept based on mixed or behavioral strategies.
7We thank a referee for this example and for pointing out a flaw in our earlier definition of BI, which only required R

(below).
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Figure 3.6: A Game with No Proper Subgames

(R) A solution concept S satisfies Rationality (on G) if, for each game Γ, (in G) and each component∏I
i=1Qi ∈ S(Γ), the following criterion is satisfied: If σi ∈ Qi, then σi is rational.

Fix a solution concept S that satisfies D, E, and R—but not necessarily CR. When we apply the solution

concept to the game Γ in Figure 3.6, we get that S(Γ) ⊆ {{(L-x, l)}, {(R-x, l)}}. This fact can be seen by

repeating the argument in Example 3.6 up to (but excluding) the last sentence. The last sentence does not

hold under R. In fact, the solution may very well specify S(Γ) = {(R-x, l)}: Focus on D. We can construct

a difference game by taking QΓ = {(R-x, l)}. In this difference game, no player has a non-trivial choice

and, so, R is trivially satisfied. Then, we can take then Q̃ = QΓ and there is no conflict with D.

Notice, in the above, R-x is rational in the whole game, i.e., if Ann assigns probability 1 to r at each

history. But, if Ann understands that the solution on the difference game pins down the solution on the

whole game, she would best respond by playing L-x. Property R does not require that a player has an

assessment consistent with the idea that “the solution on the difference game pins down behavior on the

whole game.” Property CR imposes this additional requirement.

Remark 3.3 Property R is an analogue of requirement (BI0) in Kohlberg and Mertens (1986). (See the

Appendix.) A solution concept S satisfies D, E, and CR on GPI-SPC if and only if it satisfies D, E, and R on

GPI-SPC. The “only if” is immediate. For the “if,” suppose S satisfies D, E, and R on GPI-SPC. Repeating

the argument in the proof of Proposition 3.2(i), for each Γ ∈ GPI-SPC, each component of S(Γ) is outcome

equivalent to the BI algorithm on Γ. Then the claim follows from Proposition 3.2(ii). �

Beyond Perfect-Information Games: Solution Concepts

We now point to two solution concepts, which both satisfy D, E, and CR. For the connection to D, we need

some more notation.

Fix a game Γ and a subgame ∆ of Γ. Note that the set of information sets and moves in ∆ are subsets

of the information sets and moves in Γ. Write Si (i.e., without qualification) for the set of i’s strategies in

Γ and S
[∆]
i for the set of i’s strategies in the subgame ∆. Given some s∆

i ∈ S∆
i , write [s∆

i ] for the set of

strategies si ∈ Si(∆) (i.e., the set of strategies in Γ that allow subgame ∆) which coincide with s∆
i .

Next, fix a solution concept S and a difference game Γ̃ = ΓS,Q∆ . Write H̃i for the family of i’s

information sets in the difference game Γ̃ = ΓS,Q∆ . Note that there is an injective mapping η : H̃ → H

with h̃ ⊆ η(h̃). Write M̃i[h̃i] for the moves available to i at h̃i in the difference game, and note that, for
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each h̃i, there is an injective mapping ξ[h̃i] : M̃i[h̃i] → Mi[η(h̃i)] so that m̃i ⊆ ξ[h̃i](m̃i). If s̃i is a pure

strategy for i in the difference game, we write [s̃i] for the set of pure strategies for i in Γ which coincide

with s̃i in the difference game.

Sequential Equilibrium Sequential equilibrium is typically viewed as embodying backward induction.

We now show that, indeed, sequential equilibrium satisfies D, E, and CR.

Recall the definition of sequential equilibrium (Kreps and Wilson, 1982): Fix a pair (β, µ), where β

is a profile of behavioral strategies and µ is a system of beliefs. (That is: µ : H → M(N) with each

µ(h)(h) = 1.) Say (β, µ) is consistent if there is a sequence (βk, µk)→ (β, µ) where each βk is a profile of

completely mixed behavioral strategies (i.e., for each i and hi ∈ Hi, Suppβki (hi) = Mi[hi]) and each µk is

derived from βk by conditioning. The pair (β, µ) is a sequential equilibrium if it is consistent and, for

each i, every βi(hi) is optimal under µ (among strategies in Σi(hi)). We define the sequential equilibrium

solution concept SSE by

SSE(Γ) = {{β} : there is a system of beliefs µ s.t. (β, µ) is a sequential equilibrium of Γ}.

Proposition 3.3 The solution concept SSE satisfies D, E, and CR.

Proof. The fact that SSE satisfies E and CR is standard. We focus on D.

Fix a game Γ and some β = (β1, . . . , βI) with {β} ∈ SSE(Γ). Then, there exists some system of beliefs

µ : H →M(N) such that (β, µ) is a sequential equilibrium. Fix a subgame ∆. For each information set

hi of ∆, set β∆
i (hi) = βi(hi) and µ∆(hi) = µ(hi). It is immediate that (β∆, µ∆) is a sequential equilibrium

of ∆, i.e., {β∆} ∈ SSE(∆).

Construct the difference game ΓSE,{β∆} by deleting from Γ any path (in ∆) that is played with zero

probability under β∆. This amounts to deleting from Γ any path which is in ∆ and which is played with

zero probability under β. So, certainly, each βi(η(h̃i))(ξ[h̃i](M̃i[h̃i])) = 1. Moreover, if η(h̃) is in ∆, then

η(h̃) is reached with strictly positive probability under β∆. So, in this case, µ(η(h̃))(h̃) = µ∆(η(h̃))(h̃) = 1.

Indeed, this is true more generally, i.e., for each η(h̃) (whether or not it is in ∆) µ(η(h̃))(h̃) = 1. We use

these facts repeatedly below.

Now, we define a pair (β̃, µ̃) of the difference game ΓSE,{β∆}. Choose β̃ = (β̃1, . . . , β̃I) so that each β̃i(h̃i)

satisfies β̃i(h̃i)(m̃i) = βi(ηi(h̃i))(ξ[h̃i](m̃i)), for all m̃i ∈ M̃i[h̃i]. (Recall that each βi(η(h̃i))(ξ[h̃i](M̃i[h̃i])) =

1, so this is well defined.) Likewise, choose µ̃ so that each µ̃(h̃)(n) = µ(η(h̃))(n), for each node in h̃. (Recall

that each µ(η(h̃))(h̃) = 1, so this is well-defined.) We will show that (β̃, µ̃) is a sequential equilibrium of the

difference game, so that {β̃} ∈ S(ΓSE,{β∆}). Since, by construction, any outcome allowed by β is allowed

by β̃, this will establish the result.

It is immediate from the construction that each β̃i(h̃i) is a best reply under µ̃. So, it suffices to show

that (β̃, µ̃) is consistent.

Since (β, µ) is consistent, there is some (βk, µk)→ (β, µ) where each βk is completely mixed and each

µk is derived from βk by conditioning. As such, βki (η(h̃i))(ξ[h̃i](M̃i[h̃i])) > 0 and µk(η(h̃i))(h̃i) > 0 for all

h̃i. Define (β̃k, µ̃k) as follows: For each h̃i and each m̃i ∈ M̃i[h̃i], set

β̃ki (h̃i)(m̃i) = βki (η(h̃i))(ξ[h̃i](m̃i)|ξ[h̃i](M̃i[h̃i])).

Likewise, for each h̃i and n ∈ h̃i, set µ̃k(h̃i)(n) = µk(η(h̃i))(n|h̃i). Note, by construction β̃k is completely
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mixed and µ̃k is derived from β̃k by conditioning. Moreover, using the fact that each βki (η(h̃))(ξ[h̃i](M̃i[h̃i]))→
1, µk(η(h̃i))(h̃i)→ 1, it follows that (β̃ki , µ̃

k
i )→ (β̃i, µ̃i) as required.

Extensive-Form Rationalizability Extensive-form rationalizability (EFR) can be seen as embodying

forward induction reasoning. (See Battigalli and Siniscalchi, 2002 for a formal statement.) Here we argue

that EFR also satisfies BI.

It will be convenient to amend the definition of Q−i-rationality to the case of pure strategies. Write

Si(h) (resp. S−i(h)) for the set of si ∈ Si (resp. s−i ∈ S−i) that allow h. Fix some Q−i ⊆ S−i. Say a

strategy s∗i is Q−i-pure strategy rational if, for each information set h ∈ Hi allowed by s∗i , there is some

ρi,h ∈M(S−i(h)) satisfying the following:

πi(s
∗
i , ρi,h) ≥ πi(si, ρi,h) for all si ∈ Si(h), and

if Q−i ∩ S−i(h) 6= ∅, then ρi,h(Q−i) = 1.

Now we can state the definition of EFR (Pearce, 1984): Fix a game Γ and the associated strategy sets

S1, . . . , SI . Write S0
i [Γ] = Si. Assume each Smi [Γ] is defined and let Sm+1

i [Γ] be the set of si ∈ Smi [Γ] that

are Sm−i[Γ]-rational.8 Then Sm[Γ] is the set of m-extensive form rationalizable (m-EFR) strategies

and
⋂
m≥0 S

m[Γ] is the set of extensive form rationalizable (EFR) strategies. As above, take SEFR so

that

SEFR(Γ) =
{⋂

m
Sm[Γ]

}
.

Proposition 3.4 The solution concept SEFR satisfies D, E, and CR.

Proof. Properties E and CR are standard. We focus on D.

Fix a game Γ and a subgame ∆, thereof. Let Γ̃ be the (SEFR,
⋂
m S

m[∆])-difference game. We will

construct sets X0
i , X

1
i , X

2
i , . . . satisfying the following criterion:

(i) If si ∈ Xm
i \X

m+1
i , then si is not Xm

−i-rational.

(ii) There exists M so that, each si ∈ XM
i is XM

−i-rational.

(iii) There exists N ≤M so that Π(ζ(XN )) = Π(ζ(
⋂
m S

m[Γ̃])).

Requirements (i)-(ii) say that the sets X0, X1, X2, . . . form some order of elimination of iteratively irra-

tional strategies (in Γ). By Chen and Micali (2012, Theorem 1), this order of elimination is outcome

equivalent to EFR (in Γ), i.e., Π(ζ(XM )) = Π(ζ(
⋂
m S

m[Γ])). Now use the fact that XM ⊆ XN and so

Π(ζ(
⋂
m S

m[Γ])) ⊆ Π(ζ(XN )). By (iii), the set of outcomes allowed by EFR on Γ is contained in the set of

outcomes allowed by EFR on the difference tree, i.e., Π(ζ(
⋂
m S

m[Γ])) ⊆ Π(ζ(
⋂
m S

m[Γ̃])). Thus, D holds.

To show (i)-(iii), begin by consider the sets of m-EFR strategies in the subgame ∆, i.e., S0[∆], S1[∆], . . .,

and the sets of m-EFR strategies in the difference game Γ̃, i.e., S1[Γ̃], S2[Γ̃], . . .. There exists K and J so

that SK [∆] =
⋂
m S

m[∆] and SJ [Γ̃] =
⋂
m S

m[Γ̃].

Inductively define the sets X0, X1, . . ., as follows:

• X0
i = S0

i [Γ].

• For each m = 0, . . . ,K − 1, Xm
i \X

m+1
i is the set of all [s∆

i ] ∩Xm
i for s∆

i ∈ Smi [∆]\Sm+1
i [∆].

8This is not Pearce’s (1984) original definition, since it does not explicitly require that we choose assessments to satisfy
the rules of conditional probability. However, a standard argument shows that it is equivalent to the original definition. See,
e.g., Battigalli et al. (2012).
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• For each m = K, . . . ,K+J − 1, Xm
i \X

m+1
i is the set of all [s̃i]∩Xm

i for s̃i ∈ Sm−Ki [Γ̃]\Sm−K+1
i [[Γ̃].

• For each m ≥ K + J , Xm
i \X

m+1
i is the set of all si ∈ Xm

i that are not Xm
−i-rational.

Take N = K + J and note that, there exists M ≥ N = K + J so that
⋂
n≥0X

n = XM . By construction,

requirements (ii)-(iii) hold. The remainder of the argument focuses on requirement (i).

For m = 0, . . . ,K − 1 or m = K + J, . . ., it is immediate that requirement (i) is satisfied. For m =

K, . . . ,K + J − 1: Not that, for each i, there exists some fi : XK
i → S0

i [Γ̃] so that

fi(si) is the restriction of si to the difference game Γ̃, and

fi is onto. It follows that si ∈ XK
i \X

K+1
i if and only if fi(si) ∈ S0

i [Γ̃]\S1
i [Γ̃]. Then, by induction, for

each j = 2, . . . J , si ∈ XK+j−1
i \XK+j

i if and only if fi(si) ∈ Sj−1
i [Γ̃]\Sji [Γ̃].

As a corollary of Propositions 3.2 and 3.4, we have the following:

Corollary 3.5 Fix a PI game satisfying SPC. Then any extensive-form rationalizable strategy profile is

outcome equivalent to the backward induction algorithm.

Theorem 4 in Battigalli (1997) shows that, in a PI game satisfying “no relevant ties,” any extensive-form

rationalizable strategy profile is outcome equivalent to the backward induction algorithm. (See Chen and

Micali (2012) and Heifetz and Perea (2013) for alternate proofs of the same result.) A game that satisfies

“no relevant ties” satisfies SPC, but the converse does not hold. In particular, many auction and voting

games satisfy SPC but fail “no relevant ties.”

4 Non-Monotonicity of Backward Induction

Now that we have put forward a formal definition of BI, we can establish a basic non-monotonicity. Impor-

tantly, we establish that this non-monotonicity holds, even on the class of games that satisfy SPC, written

GSPC.

Theorem 4.1 There exists a solution concept S and a refinement R of S, so that [label=()]

S satisfies D, E, and CR,

R satisfies E and CR, and

R fails D on GSPC.

In the proof of the theorem, we will take S to be sequential equilibrium. We will then show that we can

take R to be proper equilibrium or quasi-perfect equilibrium. That is, neither proper equilibrium nor

quasi-perfect equilibrium satisfies BI. This implies that the question of the consistency of A and BI is

not addressed by the results in Van Damme (1984, Proposition 1, p.9) and Kohlberg and Mertens (1986,

Proposition 0, p.1009).

Begin with proper equilibrium and quasi-perfect equilibrium. Recall the definitions (Myerson, 1978;

Van Damme, 1984). A profile of completely mixed strategies σε = (σε1, . . . , σ
ε
I) is an ε-proper equilibrium

of Γ if, for each i, πi(si, σ
ε
−i) < πi(ri, σ

ε
−i) implies σεi (si) ≤ εσεi (ri). A profile σ is a proper equilibrium of
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Γ if there is a sequence of ε-proper equilibria σε of Γ with limε→0 σ
ε = σ. We define the proper equilibrium

solution concept SPE by

SPE(Γ) = {{σ} : σ is a proper equilibrium of Γ}.

A profile of behavioral strategies β = (β1, . . . , βI) is a quasi-perfect equilibrium if there exists a

sequence of completely mixed behavioral strategy profiles, viz. βk = (βk1 , . . . , β
k
I ), so that βk → β and, for

each i and each h ∈ Hi, βi maximizes i’s conditional expected payoffs under each (βkj )j 6=i (among strategies

in Σi(hi)). We define the quasi-perfect equilibrium solution concept SQPE by

SQPE(Γ) = {{β} : β is a quasi-perfect equilibrium of Γ}.

Proposition 4.2 The solution concepts SPE and SQPE fail D.

Proof. Consider the game Γ given in Figure 4.1. We first show that there is a proper equilibrium where

Ann plays L (at the initial node) with probability 1. To see this, note that there is an ε-proper equilibrium

where Ann uses (unnormalized) weights (1:L, 2
3ε:R-l, 1

3ε:R-r) and Bob uses (unnormalized) weights (ε :L-

Out, ε3:R-Out, 3
5 : L-I-l, 3

5ε
2:R-I-l, 2

5 :L-I-r, 2
5ε

2:R-I-r). So, the outcome (1, 1) is allowed under properness.

It follows that the outcome (1, 1) is also allowed under quasi-perfection. (See Van Damme, 1984, Theorem

1, p.9.)

A

L R

B

B
L

1

1

R

0

0

Out
1
2

3
In

A

l r
B

x y

l r l r

3

7

-2

5

-1

4

4

8

Figure 4.1

Now take ∆ to be the subgame beginning at the node where Bob can choose Out. Writing Ann’s

(resp. Bob’s) strategies for ∆ in the order (l, r) (resp. (Out, I-l, I-r)), there are three subgame-perfect

equilibria of the subgame: ((1, 0), (0, 1, 0)), ((0, 1), (0, 0, 1)), and (( 2
3 ,

1
3 ), (0, 3

5 ,
2
5 )). (Note that O-l and O-r

are strongly dominated in the subgame, and so cannot be part of a subgame-perfect equilibrium.) Each of

these subgame-perfect equilibria are both proper and quasi-perfect.

Figures 4.2a-4.2c give three possible difference games (associated with ∆) for both properness and

quasi-perfection. In each of these games, Ann’s strategies L-l and L-r are weakly dominated. (In Figure

4.2c, they are weakly dominated by a 1
2 : 1

2 mixture of R-l:R-r.) Therefore, the outcome (1, 1) cannot arise

in a proper or quasi-perfect equilibrium of ∆. This contradicts D.
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Figure 4.2

It is instructive to compare the behavior of sequential equilibrium with that of proper (or quasi-perfect)

equilibrium in the game of Figure 4.1. Much as with proper (or quasi-perfect) equilibrium, there is a

sequential equilibrium where: (i) Ann puts weight 1 on L; and (ii) Bob puts weight 1 on L, weight 1 on

In, and weights 3
5 : 2

5 on l vs. r. This is supported by a system of beliefs that puts weights 2
3 : 1

3 on node

x vs. node y. Likewise, the three proper (or quasi-perfect) equilibria of the subgame ∆, there are three

sequential equilibria ∆. In particular, Figure 4.2c is again a difference game under sequential equilibrium.

The distinction is that there is a sequential equilibrium of this third difference game in which Ann plays

L. (The details are the same as for the sequential equilibrium of the original game.) So, this time, D is

satisfied (as required by Theorem 4.1).

Under properness or quasi-perfection, the situation is different. The strategies L-l and L-r for Ann are

admissible in the original game of Figure 4.1. In fact, L is played in a proper (and, therefore, quasi-perfect)

equilibrium. It is supported by a mixed strategy for Bob that puts ε-times less weight on R-I vs. L-O.

But, in the difference game, O is eliminated for Bob, and so there cannot be a mixed strategy for Bob that

puts ε-times less weight on R-I vs. L-O. As a result, L is weakly dominated in each of the difference games

of Figures 4.2a-4.2c and so cannot be part of a proper (or quasi-perfect) equilibrium of these games.

Ex post, the non-monotonicity in BI which we identify in this paper is, perhaps, not that surprising.

At least, it may not be that surprising once one has a direct definition of BI, as we provide. Here is the

essence of the argument:

• Start with a solution concept that satisfies BI. (In our case, this is sequential equilibrium.)

• Next consider a stronger solution concept. (In our case, this is proper equilibrium.)

• The stronger solution concept may prune more moves in forming a particular difference game. (In

our case, this is the move Out for Bob.)

• From elementary game theory, we know that when we prune a move for one player in a game, we can

change previously good strategies for other players into bad strategies. (In our case, these are the

strategies L-l and L-r for Ann.)
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• Suppose such a previously good strategy is played under the stronger solution concept on the overall

game. Then, this solution concept will fail D—and, therefore, BI. (In our case, Ann’s playing L is

indeed part of a proper equilibrium of the overall game.)

The argument is actually very elementary. Propositions 4.2 and 3.3 serve simply to convert the in-principle

argument into a specific instance of interest.

We note in passing that there is another (potential) source of non-monotonicity. Figure 4.2c was a

difference game for both the solution concept S and the refinement R. However, a refinement might rule

out a difference game altogether. This, too, could lead to a failure of D.

5 Are Admissibility and Difference Consistent?

Now, return to the main question: Are admissibility and BI consistent? Recall, a strategy σi ∈ M(Si) is

admissible if there is no strategy ρi ∈M (Si) which weakly dominates it. We define:

(A) A solution concept satisfies Admissibility if it contains only admissible strategies.

The question of whether A and BI are consistent amounts to: Does there exist a solution concept that

satisfies A, D, E, and CR? The answer depends on the family of extensive-form games to which we apply

the solution concept. Let us begin with two extreme cases.

Q1 Does there exist a solution concept that satisfies A, D, E, and CR on the domain of all finite (perfect-

recall) games?

Q2 Does there exist a solution concept that satisfies A, D, E, and CR on the domain of all “generic” finite

(perfect-recall) games?

Answers to these questions can already be found in the literature. Let us review.

Begin with Q1. Here the answer is no. This negative conclusion can already be seen from a modification

of Figure 5 in Kohlberg and Mertens (1986, p.1013). (The modification allows us to talk about outcomes

rather than strategies.) Kohlberg and Mertens did not, themselves, conclude that there is an inconsistency

between A and BI, precisely because they did not have a direct definition of BI. (In fact, their paper

suggests the opposite—that A and BI are consistent.) We now review the modified example.

Example 5.1 Refer to Figure 3.4 and consider the subgame following Ann’s play of L. By E and A, the

solution on the subgame requires Bob to play L. Now, refer to the difference game in Figure 5.1 and note

that, by E and A, Ann must play L in this game. So, by E and D, Ann must play L in the original game.

This yields the (2, 2) outcome. But a similar argument applies to the subgame following Ann’s play of R.

This yields the (2, 3) outcome—a contradiction.

Next turn to Q2. Here the answer is yes. This positive conclusion can by obtained from a result

by Pimienta and Shen (2010). Fix an extensive form, written G, and let PF(G) be the set of payoff

functions for the extensive-form G. Say X ⊆ PF(G) is generic relative to G if its complement is a

lower-dimensional semi-algebraic set. (See Blume and Zame, 1994 and the references there.) Theorem 1 in

Pimienta and Shen (2010) shows that, for a given extensive form G, the set of associated payoffs so that

sequential equilibrium and quasi-perfect equilibrium coincide is generic relative to G. Recall, sequential
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equilibrium satisfies D and E (Proposition 3.3) and quasi-perfect equilibrium satisfies A. So, this implies

that, for a given extensive form G, the set of payoffs so that the associated games satisfy A, D, E, and CR

is generic relative to G.

But, arguably, both Q1 and Q2 are too extreme. Q1 asks the question on a domain that includes

certain ‘pathological’ extensive-form games, such as that in Figure 3.4. Indeed, we can already see the

non-monotonicity of D (across all games) by looking at Figures 3.4 and 5.1.9 (There is a sequential and

proper equilibrium of Figure 3.4 where Ann plays R and Bob plays l-r′ with probability 1. This induces a

sequential equilibrium of the game in Figure 5.1, but not a proper equilibrium of that game.) The reason

for the non-monotonicity is that Ann is indifferent between two terminal nodes over which she is decisive,

despite the fact that Bob is not. Put differently, these two terminal nodes correspond to distinct outcomes,

despite the fact that one player is indifferent between them.

On the other hand, Q2 asks the question on a domain that excludes many ‘non-pathological’ extensive-

form games. It is asked on a strict subdomain of the domain of games where any two terminal nodes must

correspond to different outcomes. (This domain excludes Figure 4.2c, which has no ties.) The domain

excludes many extensive-form games of applied interest. In particular, it excludes extensive-form games

where distinct terminal nodes are associated with the same outcome (or consequence), e.g., voting games,

auctions, Bertrand competition, etc. (See the discussions in Mertens, 1989 and Marx and Swinkels, 1997.)

In the particular case of voting and auction games, both backward induction and admissibility are often

important aspects of the analysis.10 This leads to the question:

Q3 Does there exist a solution concept that satisfies A, D, E, and CR on the domain of all finite (perfect-

recall) games satisfying SPC?

We view this as an important open question.

6 Conclusion

In this paper, we have taken the classical view that A and BI are desirable properties for a solution concept

to satisfy. We provided a direct definition of BI and questioned the consistency of A and BI. We suggest that

there is an important open question: the consistency of A and BI on the domain of all finite (perfect-recall)

games satisfying SPC.

9We thank Priscilla Man and Andy McLennan for this point.
10Examples include Besley and Coate, 1997, Caillaud and Mezzetti, 2004, Gerardi and Yariv, 2007, and Hörner and Jamison,

2008, among many others.

19



We departed from the classical view in our insistency on giving a direct definition of BI, i.e., a test on a

solution concept that does not refer to other solution concepts. In our view, it is important to give such a

direct definition of BI—the indirect definitions in the literature cannot be viewed as primitive. Of course,

this is not to say that an indirect definition is necessarily problematic. Perhaps, there is a theorem that

says that a particular indirect approach is equivalent to a direct approach. But, it would seem that, for

this, we would still need a direct definition of BI. If we take D, E and CR as the direct definition of BI, then

the non-monotonicity result shows that the indirect approaches advocated to date do not work this way.

Experts have suggested a need for such a direct definition. For instance, in a recent paper, Govindan

and Wilson (2012, p.1671) say of their (indirect) definition of BI:

“[it] will not be appropriate for a genuine axiomatic development because it invokes one refine-

ment (quasi-perfection) to drive another (stability).”

But, at the same time, it is important to be pragmatic—certain tools are simply more expedient for making

progress in a research area. Indeed, Govindan wrote to us on the direct approach:

“I’m afraid if we go down that path, we are constraining ourselves severely and an axiomatic

approach may never be possible.”11

Arguably, the desire for pragmatics is a key factor that led the literature to shy away from a direct definition

of BI.

We agree with both viewpoints. Certainly, a pragmatic approach is often helpful and desirable in

pushing a research area forward. Our position is that it is also important to push the development of a

purist approach. First, as we said above, we do not know whether or not a consistency problem arises

on the family of games that seems to us to be of most interest. Second, suppose inconsistency is, in fact,

found. We see no a priori reason to think this would be a dead end. It is easy to call to mind inconsistency

results in various fields (e.g., the inconsistency of naive set theory) that have spurred important subsequent

developments.

A Appendix

In Section 3, we argued that, taken together, D, E, and CR capture BI. We showed that some other

proposals do not capture BI. We now return to investigate alternative formulations of BI, based on either

amending D or amending CR. The first two are suggested by property (BI3) in Kohlberg and Mertens

(1986, p.1012). The latter is suggested by property (BI0) in Kohlberg and Mertens (1986, p.1012).

a. Strategies vs. Outcomes We formulated our property D in terms of outcomes not strategies. In

accordance with this, the statement of Proposition 3.2 also involves outcomes: It says that D, E, and CR

give the BI outcome—not the BI strategies. We saw that this cannot be improved to deliver strategies.

Perhaps we should restate D, so that it is a requirement on strategies and not outcomes. Specifically:

(SD) A solution concept S satisfies Strategy-Wise Difference (on G) if for each game Γ (in G) and each

subgame ∆ of Γ the following holds. Let Q ∈ S(Γ). Then there exists a Q∆ ∈ S(∆) a PS ∈ S(ΓS,Q∆)

such that for each σ ∈ Q, the restriction of σ to ΓS,Q∆ is contained in PS .

11Hari Govindan: Personal communication.
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The proof of Proposition 3.3 shows that sequential equilibrium satisfies SD. Moreover, since quasi-

perfect and proper equilibrium fail D, they also fail SD. Therefore, our main results still hold if we replace

D with SD.

What if we take the definition of BI to be SD, E, and CR? One might think that, in the proof of

Proposition 3.2, we can replace D line-by-line with the stronger requirement of SD and reach a stronger

conclusion, viz., that we get BI strategy-wise and not just outcome-wise. But this is false.

Return to Figure 3.2, where the BI strategies were (In-Down,Out-Down). The proof of Proposition

3.2 3.3(i) requires the following analysis: Consider the subgame in Figure A.1a. Per the new induction

hypothesis, suppose that the solution on this subgame gives the BI strategies. Now consider the associated

difference game in Figure A.1b. By E and CR, Ann must choose In. From this, E and SD say that, in

the original game, Ann must choose some strategy and this strategy must be consistent with In. But this

strategy need not be In-Down; it could be In-Across. Certainly, then, if replace D with SD, our proof

will not yield the stronger conclusion. We conjecture that a solution concept can satisfy SD, E, and CR,

even though it fails to give the BI strategies. (Of course, it must give the BI outcome.)
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b. Expected Payoffs vs. Pruning Fix a solution concept S where each nonempty component is a

singleton. In this case, we could formulate D in terms of expected payoffs rather than outcomes: Given

a component Q ∈ S(Γ), we could ask that there is a nonempty (singleton) component Q∆ ∈ S(∆) such

that, when we replace ∆ with a terminal node whose payoffs are the expected payoffs under Q∆, there is a

component Q̃ of the solution on the new game that induces the outcomes in Q. We can mimic the proofs

of Propositions 4.2 and 3.3 to show that sequential equilibrium will satisfy this expected-payoff version of

D, but proper (and quasi-perfect) equilibrium will not.

This said, there is no clear way to extend this version of D to the common cases of solution concepts

with multi-valued components. So, this version would, say, rule out the solution concept of extensive-form

rationalizability as satisfying D because the solution concept can have a multi-valued component.

c. Rationality Our definition of BI requires CR. In Section 3, we pointed to the fact that this is stronger

than R.

Kohlberg and Mertens’s (1986) Property (BI0) strengthens R on a second dimension by requiring that

a strategy σi is optimal at every information set h ∈ Hi, i.e., even at information sets that are not allowed

by σi. They impose this stronger requirement, as they focus on equilibrium-based solution concepts, where

player i’s strategy serves as other players’ assessment about how i plays the game. We don’t insist on this

requirement, because we don’t insist on equilibrium-based solution concepts.
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We could amend the definitions of R and CR to incorporate this stronger requirement. To see this, note

the following fact: If a pure strategy si is Q−i-rational, then every pure strategy ri that induces the same

plan of action as si is also Q−i-rational. Thus, if si is Q−i-rational, there will be some strategy ri that

induces the same plan of action as si,

is Q−i-rational, and

satisfies Kohlberg and Mertens’s (1986) (BI0).
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